China factories

China factory - XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.

XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.

  • China,Xiamen ,Fujian
  • Active Member

Leave a Message

we will call you back quickly!

Submit Requirement
China C(0001) 6H N Type SiC Wafer, Research Grade,Epi Ready, 2”Sizes
China C(0001) 6H N Type SiC Wafer, Research Grade,Epi Ready, 2”Sizes

  1. China C(0001) 6H N Type SiC Wafer, Research Grade,Epi Ready, 2”Sizes

C(0001) 6H N Type SiC Wafer, Research Grade,Epi Ready, 2”Sizes

  1. MOQ: 1-10,000pcs
  2. Price: By Case
  3. Get Latest Price
Payment Terms T/T
Supply Ability 10,000 wafers/month
Delivery Time 5-50 working days
name 6H N Type SIC Wafer
Grade Research Grade
Description Research Grade 6H SiC Substrate
Carrier Type n-type
Diameter (50.8 ± 0.38) mm
Thickness (250 ± 25) μm (330 ± 25) μm (430 ± 25) μm
Brand Name PAM-XIAMEN
Place of Origin China

View Detail Information

Contact Now Ask for best deal
Get Latest Price Request a quote
  1. Product Details
  2. Company Details

Product Specification

Payment Terms T/T Supply Ability 10,000 wafers/month
Delivery Time 5-50 working days name 6H N Type SIC Wafer
Grade Research Grade Description Research Grade 6H SiC Substrate
Carrier Type n-type Diameter (50.8 ± 0.38) mm
Thickness (250 ± 25) μm (330 ± 25) μm (430 ± 25) μm Brand Name PAM-XIAMEN
Place of Origin China
High Light silicon carbide wafersemi standard wafer

 

 
C(0001) 6H N Type SiC Wafer, Research Grade,Epi Ready, 2”Sizes
 
PAM-XIAMEN offers semiconductor silicon carbide wafers,6HSiC and 4H SiC in different quality grades for researcher and industry manufacturers. We has developed SiC crystal growth technology and SiC crystal wafer processing technology,established a production line to manufacturer SiCsubstrate,Which is applied in GaNepitaxydevice,powerdevices,high-temperature device and optoelectronic Devices. As a professional company invested by the leading manufacturers from the fields of advanced and high-tech material research and state institutes and China’s Semiconductor Lab,weare devoted to continuously improve the quality of currently substrates and develop large size substrates.
Here shows detail specification
 


Here Shows Detail Specification:
SILICON CARBIDE MATERIAL PROPERTIES

 

Polytype Single Crystal 4H Single Crystal 6H
Lattice Parameters a=3.076 Å a=3.073 Å
  c=10.053 Å c=15.117 Å
Stacking Sequence ABCB ABCACB
Band-gap 3.26 eV 3.03 eV
Density 3.21 · 103 kg/m3 3.21 · 103 kg/m3
Therm. Expansion Coefficient 4-5×10-6/K 4-5×10-6/K
Refraction Index no = 2.719 no = 2.707
  ne = 2.777 ne = 2.755
Dielectric Constant 9.6 9.66
Thermal Conductivity 490 W/mK 490 W/mK
Break-Down Electrical Field 2-4 · 108 V/m 2-4 · 108 V/m
Saturation Drift Velocity 2.0 · 105 m/s 2.0 · 105 m/s
Electron Mobility 800 cm2/V·S 400 cm2/V·S
hole Mobility 115 cm2/V·S 90 cm2/V·S
Mohs Hardness ~9 ~9

 

 

 
 
6H N Type SiC Wafer, Research Grade,Epi Ready, 2”Sizes
 

 

SUBSTRATE PROPERTY S6H-51-N-PWAM-250 S6H-51-N-PWAM-330 S6H-51-N-PWAM-430
Description Research Grade 6H SiC Substrate
Polytype 6H
Diameter (50.8 ± 0.38) mm
Thickness (250 ± 25) μm (330 ± 25) μm (430 ± 25) μm
Carrier Type n-type
Dopant Nitrogen
Resistivity (RT) 0.02 ~ 0.1 Ω·cm
Surface Roughness < 0.5 nm (Si-face CMP Epi-ready); <1 nm (C- face Optical polish)
FWHM <50 arcsec
Micropipe Density A+≤1cm-2 A≤10cm-2 B≤30cm-2 C≤50cm-2 D≤100cm-2
Surface Orientation
On axis <0001>± 0.5°
Off axis 3.5° toward <11-20>± 0.5°
Primary flat orientation Parallel {1-100} ± 5°
Primary flat length 16.00 ± 1.70 mm
Secondary flat orientation Si-face:90° cw. from orientation flat ± 5°
C-face:90° ccw. from orientation flat ± 5°
Secondary flat length 8.00 ± 1.70 mm
Surface Finish Single or double face polished
Packaging Single wafer box or multi wafer box
Usable area ≥ 90 %
Edge exclusion 1 mm

 

 

 

Here we show you and detail spec as follows:

 

research grade, epi-ready 6H-SiC(0001) for molecular beam epitaxy growths.
Specs for 6H-SiC(0001):
Substrate, SiC,
orientation <0001>0deg +/-0.5deg.
dia. 50.80+/-0.38 mm
thickness: 0.43 +/-0.025mm
one side epi polishing
N-type, N-doped is 1E 18-19 /CM3
Res. is 0.02~0.1 Ω•cm
research grade micropipe density < = 15cm-2
double side polished with Si face CMP,C face optical polish

 
SiC crystal growth
Bulk crystal growth is the technique for fabrication of single crystalline substrates , making the base for further device processing.To have a breakthrough in SiC technology obviously we need production of SiC substrate with a reproducible process.6H- and 4H- SiC crystals are grown in graphite crucibles at high temperatures up to 2100—2500°C. The operating temperature in the crucible is provided either by inductive (RF) or resistive heating. The growth occurs on thin SiC seeds. The source represents polycrystalline SiC powder charge. The SiC vapor in the growth chamber mainly consists of three species, namely, Si, Si2C, and SiC2, which are diluted by carrier gas, for example, Argon. The SiC source evolution includes both time variation of porosity and granule diameter and graphitization of the powder granules.
 
lattice parameter
The lattice constant, or lattice parameter, refers to the constant distance between unit cells in a crystal lattice. Lattices in three dimensions generally have three lattice constants, referred to as a, b, and c. However, in the special case of cubic crystal structures, all of the constants are equal and we only refer to a. Similarly, in hexagonal crystal structures, the a andb constants are equal, and we only refer to the a and c constants. A group of lattice constants could be referred to as lattice parameters. However, the full set of lattice parameters consist of the three lattice constants and the three angles between them.
For example the lattice constant for a common carbon diamond is a = 3.57Å at 300 K. The structure is equilateral although its actual shape can not be determined from only the lattice constant. Furthermore, in real applications, typically the average lattice constant is given. As lattice constants have the dimension of length, their SI unit is the meter. Lattice constants are typically on the order of several angstroms (i.e. tenths of a nanometre). Lattice constants can be determined using techniques such as X-ray diffraction or with an atomic force microscope.
In epitaxial growth, the lattice constant is a measure of the structural compatibility between different materials. Lattice constant matching is important for the growth of thin layers of materials on other materials; when the constants differ, strains are introduced into the layer, which prevents epitaxial growth of thicker layers without defects. 

 



 

Company Details

Bronze Gleitlager

,

Bronze Sleeve Bushings

 and 

Graphite Plugged Bushings

 from Quality China Factory
  • Business Type:

    Manufacturer,Exporter,Seller

  • Year Established:

    1990

  • Total Annual:

    10 Million-50 Million

  • Employee Number:

    50~100

  • Ecer Certification:

    Active Member

  Xiamen Powerway Advanced Material Co.,Limited(PAM-XIAMEN) is a high-tech enterprise for compound semiconductor material integrating semiconductor crystal growth, process development and epitaxy, specializing in the research and production of compound semiconductor wafers, there are two mai...   Xiamen Powerway Advanced Material Co.,Limited(PAM-XIAMEN) is a high-tech enterprise for compound semiconductor material integrating semiconductor crystal growth, process development and epitaxy, specializing in the research and production of compound semiconductor wafers, there are two mai...

+ Read More

Get in touch with us

  • Reach Us
  • XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.
  • #506B, Henghui Business Center, No.77, Lingxia Nan Road, High Technology Zone, Huli, Xiamen 361006, China
  • http://www.ganwafer.com/

Leave a Message, we will call you back quickly!

Email

Check your email

Phone Number

Check your phone number

Requirement Details

Your message must be between 20-3,000 characters!

Submit Requirement