Payment Terms | T/T |
Supply Ability | 10,000 wafers/month |
Delivery Time | 5-50 working days |
Packaging Details | Packaged in a class 100 clean room environment, in single container, under a nitrogen atmosphere |
product name | Indium phosphide InP Wafer |
Wafer Diamter | 4 inch |
Conduction Type | P Type |
Grade | Prime Grade |
Wafer Thickness | 350±25um |
keyword | single crystal Indium Phosphide Wafers |
Brand Name | PAM-XIAMEN |
Place of Origin | China |
View Detail Information
Explore similar products
N Type , InP(Indium Phosphide) Substrate,3”, Prime Grade -Compound Semiconductor
P Type , VGF InP Wafer With CMP Polished , 2”, Prime Grade , Epi Ready
Semi-Insulating , Iron-Doped Indium Phosphide Substrate , 4”, Prime Grade
Semi-Insulating ,InP ( Indium Phosphide) Crystal Wafer , 3”, Dummy Grade
Product Specification
Payment Terms | T/T | Supply Ability | 10,000 wafers/month |
Delivery Time | 5-50 working days | Packaging Details | Packaged in a class 100 clean room environment, in single container, under a nitrogen atmosphere |
product name | Indium phosphide InP Wafer | Wafer Diamter | 4 inch |
Conduction Type | P Type | Grade | Prime Grade |
Wafer Thickness | 350±25um | keyword | single crystal Indium Phosphide Wafers |
Brand Name | PAM-XIAMEN | Place of Origin | China |
High Light | indium phosphide wafer ,test grade wafer |
P Type , High Purity Single Crystal Indium Phosphide Wafer , 4”, Prime Grade
PAM-XIAMEN manufactures high purity single crystal Indium Phosphide Wafers for optoelectronics applications. Our standard wafer diameters range from 25.4 mm (1 inch) to 200 mm (6 inches) in size; wafers can be produced in various thicknesses and orientations with polished or unpolished sides and can include dopants. PAM-XIAMEN can produce wide range grades: prime grade, test grade, dummy grade, technical grade, and optical grade. PAM-XIAMEN also offer materials to customer specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies.
P Type, Indium Phosphide Wafer, 4”, Prime Grade
4"InP Wafer Specification | ||||
Item | Specifications | |||
Conduction Type | P-type | |||
Dopant | Zinc | |||
Wafer Diameter | 4" | |||
Wafer Orientation | 100±0.5° | |||
Wafer Thickness | 600±25um | |||
Primary Flat Length | 16±2mm | |||
Secondary Flat Length | 8±1mm | |||
Carrier Concentration | ≤3x1016cm-3 | (0.8-6)x1018cm-3 | (0.6-6)x1018cm-3 | N/A |
Mobility | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70cm2/V.s | >1000cm2/V.s |
Resistivity | N/A | N/A | N/A | >0.5x107Ω.cm |
EPD | <1000cm-2 | <1x103cm-2 | <1x103cm-2 | <5x103cm-2 |
TTV | <15um | |||
BOW | <15um | |||
WARP | <15um | |||
Laser Marking | upon request | |||
Suface Finish | P/E, P/P | |||
Epi Ready | yes | |||
Package | Single wafer container or cassette |
What is InP wafer?
Indium phosphide is a semiconducting material similar to GaAs and silicon but is very much a niche product. It’s very effective at developing very high-speed processing and is more expensive than GaAs because of the great lengths to gather and develop the ingredients. Let’s take a look at some more facts about indium phosphide as it pertains to an InP Wafer.
Transport Properties in High Electric Fields
![]() | Field dependences of the electron drift velocity in InP, 300 K. Solid curve are theoretical calculation. Dashed and dotted curve are measured data. (Maloney and Frey [1977]) and (Gonzalez Sanchez et al. [1992]). |
![]() | The field dependences of the electron drift velocity for high electric fields. T(K): 1. 95; 2. 300; 3. 400. (Windhorn et al. [1983]). |
![]() | Field dependences of the electron drift velocity at different temperatures. Curve 1 -77 K (Gonzalez Sanchez et al. [1992]). Curve 2 - 300 K, Curve 3 - 500 K (Fawcett and Hill [1975]). |
![]() | Electron temperature versus electric field for 77 K and 300 K. (Maloney and Frey [1977]) |
![]() | Fraction of electrons in L and X valleys nL/no and nX/no as a function of electric field, 300 K. (Borodovskii and Osadchii [1987]). |
![]() | Frequency dependence of the efficiency η at first (solid line) and at the second (dashed line) harmonic in LSA mode. Monte Carlo simulation. F = Fo + F1·sin(2π·ft) + F2·[sin(4π·ft)+3π/2], Fo=F1=35 kV cm-1, F2=10.5 kV cm-1 (Borodovskii and Osadchii [1987]). |
![]() | Longitudinal (D || F) and transverse (D ⊥ F) electron diffusion coefficients at 300 K. Ensemble Monte Carlo simulation. (Aishima and Fukushima [1983]). |
![]() | Longitudinal (D || F) and transverse (D ⊥ F) electron diffusion coefficients at 77K. Ensemble Monte Carlo simulation. (Aishima and Fukushima [1983]). |
InP based lasers and LEDs can emit light in the very broad range of 1200 nm up to 12 µm. This light is used for fibre based Telecom and Datacom applications in all areas of the digitalised world. Light is also used for sensing applications. On one hand there are spectroscopic applications, where a certain wavelength is needed to interact with matter to detect highly diluted gases for example. Optoelectronic terahertz is used in ultra-sensitive spectroscopic analysers, thickness measurements of polymers and for the detection of multilayer coatings in the automotive industry. On the other hand there is a huge benefit of specific InP lasers because they are eye safe. The radiation is absorbed in the vitreous body of the human eye and cannot harm the retina. InP lasers in LiDAR (Light Detection And Ranging) will be a key component for the mobility of the future and the automation industry.
PAM-XIAMEN is your go-to place for everything wafers, including InP wafers, as we have been doing it for almost 30 years! Enquire us today to learn more about the wafers that we offer and how we can help you with your next project. Our group team is looking forward to providing both quality products and excellent service for you!
Company Details
Business Type:
Manufacturer,Exporter,Seller
Year Established:
1990
Total Annual:
10 Million-50 Million
Employee Number:
50~100
Ecer Certification:
Active Member
Xiamen Powerway Advanced Material Co.,Limited(PAM-XIAMEN) is a high-tech enterprise for compound semiconductor material integrating semiconductor crystal growth, process development and epitaxy, specializing in the research and production of compound semiconductor wafers, there are two mai... Xiamen Powerway Advanced Material Co.,Limited(PAM-XIAMEN) is a high-tech enterprise for compound semiconductor material integrating semiconductor crystal growth, process development and epitaxy, specializing in the research and production of compound semiconductor wafers, there are two mai...
Get in touch with us
Leave a Message, we will call you back quickly!